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PREFACE

Through Section 101, Public Law 91-611, of the 1970 Rivers and

Harbors Act, Congress authorized a plan of improvement to deepen the

existing channels and approaches to Baltimore Harbor. The U. S. Army

Engineer District, Baltimore (NAB), requested the U. S. Army Engineer

Waterways Experiment Station (WES) to conduct a hydraulic model study to

investigate hydrodynamic changes associated with the proposed channel

deepening to the presently authorized depth of 50 ft.

This study was performed 20 July through 29 October 1978, at the

Chesapeake Bay Model, Stevensville, Maryland, Estuaries Division, Hydrau-

lics Laboratory, WES, by personnel of the Chesapeake Bay Model Branch,

WES, and personnel of Acres American, Inc., contractor to WES for opera-

tion of the model. This study was accomplished under the general direc-

tion of Mr. H. B. Simmons, Chief of the Hydraulics Laboratory, Mr. F. A.

Herrmann, Jr., Assistant Chief of the Hydraulics Laboratory, Mr. R. A.

Sager, Chief of the Estuaries Division, and Dr. J. W. Hayden, Project

Manager for Acres American, Inc. Testing was conducted under the direct

supervision of Mr. D. F. Bastian, former Chief of the Chesapeake Bay

Model Branch, and Mr. T. E. Raster, Project Engineer for Acres American,

Inc. Mr. T. E. Raster was also Test Engineer throughout the study for

Acres American, Inc., Mr. M. A. Granat was Project Scientist for WES

during the steady-state velocity tests, and Mr. L. G. Crosby was Project

Engineer for WES during the dynamic salinity tests. Data analysis and

preparation of the report were accomplished under the direct supervision

of Mr. R. 0. Bruno, Chief of the Chesapeake Bay Model Branch. Other key

personnel involved in model testing were Messrs. H. J. Rhodes and N. W.

Scheffner and Ms. V. R. Pankow for WES, and Messrs. W. M. Dyok and H. W.

Whetzel for Acres American, Inc.

A preliminary boundary control and data presentation report was

prepared by Mr. L. F. Gulbrandsen of Acres American, Inc., and was sub-

mitted by WES to NAB in March 1979. This present report was prepared

by Mr. Granat with the assistance of Mr. Gulbrandsen.

Commanders and Directors of WES during the conduct of this study
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and the preparation and publication of this report were COL John L.

Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. 
Creel, CE.

Technical Director was Mr. F. R. Brown.
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

Multiply By To Obtain

acres 0.4047 hectares

cubic feet per second 0.02831685 cubic metres per second

cubic yards 0.7645549 cubic metres

feet 0.3048 metres

feet per second 0.3048 metres per second

inches 25.4 millimetres

miles (U. S. statute) 1.609344 kilometres

square miles (U. S. statute) 2.589988 square kilometres
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BALTIMORE HARBOR AND CHANNELS DEEPENING STUDY

Chesapeake Bay Hydraulic Model Investigation

PART I: INTRODUCTION

The Chesapeake Bay System and Baltimore Harbor

1. Chesapeake Bay, located on the east coast of the United States,

is one of the largest, most productive, and diversely used estuaries in

the world. The bay (Figure 1) extends approximately 190 miles* from the

ocean entrance in the Commonwealth of Virginia, between Cape Henry and

Cape Charles, to the Susquehanna River in the State of Maryland. In

geologic terms, Chesapeake Bay is a submerged river valley and may be

considered a dynamic remnant of the ancestral Susquehanna River. The

average depth of the bay is about 28 ft; naturally deep areas greater

than 50 ft traverse the bay for more than 60 percent of its length. The

maximum depth of 175 ft is located near Bloody Point, Kent Island, Mary-

land, in the upper bay.

2. The bay is sufficiently long to accommodate one complete tidal

wave at all times. Tides are semidiurnal and have low amplitudes, gen-

erally under 2 ft at most locations. The speed of the tidal wave allows

a ship traversing up or down the bay to travel with favorable currents

for most of its journey. In addition to the astronomical forces, meteo-

rological and wind stress forces greatly influence the hydrodynamic char-

acteristics of the estuary.

3. Like many coastal plain estuaries, the bay is irregular in

shape varying in width from 4 to 30 miles. More than 64,OO square miles

of drainage area empty into the partially mixed estuary. Five major

western shore river systems (Susquehanna, Potomac, James, York, and Rap-

pahannock) provide approximately 90 percent (over 61,000 cfs) of the mean

* A table of factors for converting U. S. customary units of measure-

ments to metric (SI) units is presented on page 4.
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annual freshwater discharge. The Susquehanna River at the head of the

bay contributes approximately one-half of the total bay freshwater inflow.

4. The interchange and mixing of fresh riverine water and salty

ocean water within the estuary help maintain the Chesapeake Bay system

as a productive natural resource. The many natural resources and pro-

cesses within the bay, and man's activities in and on it, interact to

form a complex and interrelated system. Man's continued development and

utilization of these natural resources place increased stress on the

system. Problems arise when man's intended use of one resource conflicts

with either the natural environment or man's use of another resource.

As a result of this incompatibility and the lack of knowledge of asso-

ciated complex estuarine processes, a need exists for an overall bay

management program. Through Section 312 of the Rivers and Harbors Act

of 1965 (PL 89-298), Congress authorized the Corps of Engineers to con-

struct, operate, and maintain a hydraulic model of Chesapeake Bay to

assist in undertaking a complete investigation and study of water utili-

zation and control of the Chesapeake Bay Basin.

5. This report covers the first major study conducted at the hy-

draulic model. Baltimore Harbor, in the Patapsco River, has historically

ranked as one of the leading ports in the Nation and the world in terms

of tonnage and dollar value. The Port of Baltimore is the closest North

Atlantic port to the Midwest and is located close to the coal-rich areas

of West Virginia, Ohio, and Pennsylvania. It is primarily a foreign

trade port specializing in large, bulk-container cargo. Import of iron

ore and export of coal are becoming especially important. With the con-

tinuing trend to larger and deeper draft vessels, water depth restric-

tions within Chesapeake Bay and Baltimore Harbor are making water trans-

portation to and from Baltimore Harbor relatively inefficient.

The Improved Channels to Baltimore Harbor

6. Four reaches within Chesapeake Bay, as shown in Figure 1, con-

stitute the 36.6 miles of improved navigation channels, maintained at a

depth of 42 ft in the 172-mile journey from the Atlantic Ocean at

7
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Cape Henry to Fort McHenry in Baltimore Harbor. These depths are

presently inadequate to accommodate the existing larger size ships.

Through Section 101, Public Law 91-611, of the 1970 Rivers and Harbors

Act, Congress authorized a plan of improvement to deepen the existing

channels and approaches to Baltimore Harbor to meet the existing and

prospective needs of navigation.

7. The proposed plan of improvement calls for deepening the four

reaches of improved channels from 42 ft to 50 ft and extending channels

to the natural 50-ft-depth curves. These improvements will require

dredging of over 70 million cu vd of material and will increase the total

length of maintained channels by 13.7 miles, from 36.6 to 50.3 miles.

The existing and proposed channel dimensions are listed below. Rappahan-

nock Shoal channel is to he widened from 300 ft to 1000 ft. Additional

improvements to several branch channels and anchorages within the

Patapsco River have also been proposed.

Existing Proposed

Length Width Length Width

Channel miles ft miles ft

Cape Henrv 1.0 1000 2.3 1000

York Spit 10.4 1000 19.2 1000

Rappahannock Shoal 5.3 S0 9.9 1000

Main Ship

(Baltimore Harbor and approach) lq.9 300 19.9 300

Test Objectives

3. Tests using the Chesapeake Bay hydraulic model were undertaken

to investigate possible changes to the hydrodynamic characteristics of

velocity, salinity, and tidal elevations of the system due to the pro-

posed channel enlargements.

The Chesapeake Bay Hydraulic Model

9. Briefly, the fixed-bed model is molded in concrete to conform

to the most recent hathymetry at the time of construction (1974). The

3



8.6-acre model is housed in a 14-acre shelter approximately 1000 ft long

and 600 ft wide for protection from the elements. The molded area of

the model extends to the +20 ft contour from the offshore Atlantic Ocean

to the head of tide for all tributaries emptying into Chesapeake Bay.

Economics and hydrodynamics were considered in choosing the 1:1000 hori-

zontal and 1:100 vertical model to prototype scales. Time (1:100), ve-

locity (1:10), and discharge (1:1,000,000) scales are based on Froudian

scaling laws reflecting similitude of gravitational effects. Salinity

is maintained at a 1:1 ratio.

10. The model was designed to include all necessary appurtenances

for the accurate reproduction and measurement of prototype conditions.

It differs somewhat from most other physical models in size and degree

of automation. Both freshwater inflows and tide generators can be com-

pletely computer-controlled. Inflows are computer-controlled through a

feedback mechanism that allows accurate control of variable discharges

from drought to hurricane conditions. Any desired hydrograph can be pro-

grammed for each of the 21 inflow points on the model (Figure 1). For

site-specific studies, watersheds can be further subdivided to additional

inflow points. The two tide generators (ocean and Chesapeake and Dela-

ware (C&D) Canal, Figure 1) are computer-controlled and are capable of

simulating any desired tide sequence including a lunar month of variable

tides producing neap to spring variations.

I. As in other distorted-scale physical models, stainless steel

roughness strips projecting from the model bottom are used to adjust

flow patterns and serve to increase the frictional resistance and, to

some extent, the degree of vertical mixing. An induced-mixing bubble

line of compressed air, from the model bottom running along the axis of

the bay and major tributaries (Figure 2), is utilized in reducing the

degree of stratification resulting from the lack of meteorological

mixing in the model. This system has been improved from the tygon tubing

used during verification to a 1/2-in. ID copper tubing supply line above

the water level, feeding air through stopcock valves to 1/8-in. ID copper

tubing drop lines to the model bottom (Figure 3). These drop lines, at

about a 12-ft spacing, provide a bubbling grid similar to verification

9



S US QUEHA NNA R.- ~~C£ AA

-N - SALTIOR L../\, .

WASINGTONC 

E TR A

CHOP TANK R.

NANICOKE .

POCOAMOKE P

V u'2 0i dr in tb n ioi



AIR LINE

ROUGT ES

Figure 3. Induced-mixing bubble line drop

conditions, with an extension into the Patapsco River. A detailed de-

scription and discussion of all additional model appurtenances and model

verification are presented in a separate report (Scheffner et al. 1981).*

Scope of Model Tests

12. Tests were performed with the hydraulic model to assess the

magnitude of variations in velocity, salinity, and tidal characteristics

associated with the proposed improvements to the Baltimore Harbor and

* N. W. Scheffner et al. 1981 (Dec). "Verification of Chesapeake Bay
Model; Chesapeake Bay Hydraulic Model Investigation," Technical Re-

port HL-81-14, U. S. Army Engineer Waterways Experiment Station, CE,
Vicksburg, Miss.
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Channels area. A series of base tests were conducted using the verified

model with the existing 42-ft channels plus a 2-ft dredging tolerance.

After these tests were completed, the channels were remolded to the new

authorized 50-ft depths plus a 2-ft dredging tolerance, and a series of

compatible plan tests were similarly performed. Roughness strip distri-

bution determined during model verification was maintained. A similar

distribution was reestablished in the deepened channel areas for the

plan tests. The induced-mixing bubble line was similarly maintained

with appropriate extension to the model bottom, where necessary, for the

plan test.

13. Two separate modes of model operation and testing were fol-

lowed. In the first mode velocity measurements were undertaken at 13 se-

lected stations during four separate steady-state tests utilizing fixed

boundary conditions. In the second mode salinity and tide-height mea-

surements were collected at 68 and 10 locations, respectively, during

dynamic conditions associated with a repetitive 28-lunar-day variable

tide sequence and a 2-1/2-year freshwater discharge hydrograph which was

stepped weekly (solar time). These two operating and testing modes will

be discussed separately in the following sections.

12



PART II: STEADY-STATE VELOCITY TESTING

Test Conditions

14. Steady-state velocity tests were designed to examine varia-

tions covering a wide range of specific fixed boundary conditions. For

each test a cosine tide with either a neap (2.55 ft) or spring (3.75 ft)

range was repeatedly generated from the ocean tide generator. The other

boundary control test parameter that changed from test to test was fresh-

water discharge. The long-term average flow distribution for each of the

21 inflow points (proportion of total bay discharge as determined by the

U. S. Army Engineer District, Baltimore) was maintained; however, the

total bay discharge was selected as either 30,000 cfs representing a sea-

sonal low-flow period or 120,000 cfs representing a seasonal high-flow

period. Table I presents the long-term average flow distribution (per-

centage) and the specific flows for each inflow device. A different

combination of tide and discharge (i.e. spring tide 120,000 cfs; neap

tide 120,000 cfs; spring tide 30,000 cfs; and neap tide 30,000 cfs) was

utilized for each of the four steady-state tests.

15. The following boundary conditions were maintained during all

tests. A cosine tide was generated at the Delaware end of the C&D Canal

to achieve the mean tide range of 2.75 ft at Chesapeake City (sta 75).

The tide plane was adjusted to maintain a zero net flow of water through

the C&D Canal. C&D Canal source salinity (Delaware Bay) was allowed to

vary between 2 and 5 ppt before adjustments were made at the Reedy Point

end of the canal. Ocean source salinity was maintained at approximately

32.5 ppt. Two sources of industrial discharge were also simulated in

the model study. The long-term average discharge for the Sparrows Point

Steel Manufacturing Plant in the Patapsco River (186 cfs) and the Back

River Sewage Treatment Plant (58 cfs) were added to the model at their

respective locations (Figure 1). Model boundary control during all

tests was considered acceptable. A complete documentation of all

13



boundary conditions is available (Gulbrandsen 1979).*

Test Data and Results

16. Once appropriate boundary conditions were established salinity

monitoring was begun at 11 salinity monitoring stations (Figure 1) to

assess when a stable salinity distribution (the same salinity profile

from one tidal cycle to another) was reached. Once a relative stability

was achieved, velocity measurements were taken at the 13 designated ve-

locity stations (Figure 4) for bottom, middle, and then surface depths.

Seven of the thirteen stations were within the dredged channels (CPH-1,

CB-1-5, YSC-4, RSC-2, CC-2, BC-4, and FM-1), four stations were posi-

tioned in potential dredged material disposal areas (OD-1, OD-2, OD-3,

and OD-4), and two stations were located adjacent to channels to be

deepened (YSC-1 and BC-2). Sampling depths at the seven deepened channel

stations were adjusted for the plan test to maintain the same relative

sampling depths within the water column. Table 2 provides sampling

depths for each station.

17. Miniature Price-type mechanical cup wheel current meters (Fig-

ure 5) were utilized at 11 stations (excluding the two upper Patapsco

River sta BC-4 and FM-1). The number of revolutions in a 10-sec interval

(real time) was recorded every 36 sec (1 hr prototype) for 15 min to ob-

tain a complete day's velocity record at each desired depth. The ac-

curacy of these measurements is generally between 0.25 and 0.50 fps

(prototype). The accuracy increases with increased current speed. A

least-squares cosine curve fitting program with an M2 (tidal harmonic

constituent) frequency was employed to obtain summary values of phase,

amplitude, and offset. The fitted curve is of the form:

y = h + a cos (0 + 0)

* L. F. Gulbrandsen. 1979. "Baltimore Harbor and Channels Deepening

Study; Hydraulic Model Boundary Control and Data Presentation," Acres
American, Inc.; report on file at U. S. Army Engineer Waterways Exper-
iment Station, CE, Vicksburg, Miss., and U. S. Army Engineer District,
Baltimore, Baltimore, Md.

14
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where:

h = offset and indicates flood dominance when positive, ebb
0 dominance when negative

a = amplitude, one half the heLght of the cosine curve
0 = the M2 tidal harmonic constituent

* = the phase angie; time of peak velocity in degrees,

approximately 29 deg/hr.

Confidence in these obtained values is generally greater than that in

observed values since all measurements are together taken into consider-

ation, with anomalous values having little influence.

18. A miniature drogue and float device (Figure 5) was used at the

two upper Patapsco River stations (BC-4 and FM-I) since their velocities

were generally of insufficient magnitude to overcome threshold of move-

ment of the mechanical cup wheels. This measuring technique employed a

stopwatch; a circular ring stand with an inner and outer circle (inner

circle diameter 0.25 ft, outer circle radius from edge of inner circle

0.50 ft); and a flotation device constructed from a half sphere of cork

(diameter 0.1 ft), a plastic cross (each arm of cross 0.4 in. high by

0.7 in. long), and a wire which connected the cork and cross (length

varied according to desired depth, Table 2). The center of the ring

stand was placed over the desired station. At the designated hour the

flotation device was released from the center of the station, and time

of travel from the edge of the inner circle to the outer circle, a dis-

tance of 0.50 ft, was recorded. This procedure was repeated for each

hour to obtain a complete day's record.

19. Several difficulties were encountered during these Lagrangian

measurements. Roughness strips and channel walls frequently interfered

with the drogue movement. In some cases, water flow was so slow that

measurements continued beyond a 36-sec interval (1 hr prototype) or were

not completed due to slack water or current reversals. Measurements

were reduced to hourly velocity values and analyzed with the least

squares cosine curve fitting program. The nature of this program re-

quires that missing hourly data be assigned zero values. Due to the

unfamiliar technique, the sluggish velocities, and their associated

17



characteristics, the error band of drogue measurements is difficult to

assess but is probably close to 0.2 fps (prototype). Many of the ob-

served velocities are within this error band. An alternative technique

employing droplets of neutrally buoyant oil as the tracking medium

proved even more difficult and inefficient.

20. Plates 1-26 illustrate observed velocities and the cosine fit

for compatible base and plan conditions for all stations and tests. As-

sociated phase, amplitude, and offset values are presented in Tables 3-6.

Maximum flood (amplitude + offset) and maximum ebb (amplitude - offset)

values are also provided. Base and plan plots of phase, amplitude, and

offset values as functions of depth for all stations during each test

are illustrated in Plates 27-30. Tables 7-10 present plan minus base

differences for phase, amplitude, offset, maximum flood, and maximum ebb

values for each test. Plate 31 illustrates plots of phase, amplitude,

and offset differences as functions of depth. Plate 32 illustrates

plots of maximum flood and maximum ebb differences as functions of depth

for each test. Frequency-of-occurrence tables provide a final summary

(total of all tests) of plan-to-base difterences for each of the ve-

locity attributes (Tables 11-15).

Discussion of Results

21. The least-squares cosine curve fitting program provides an

excellent basis for evaluating the velocity measurements; however, since

this is a smoothing technique, consideration should also be given to the

hourly values and station locations to ensure accurate and complete in-

terpretations. By curve fitting, all hourly observations are together

taken into consideration in obtaining the three summary values (phase,

amplitude, and offset) that are generally insensitive to a few outlier

observations. The obtained values therefore have a higher confidence

than individual observations.

22. Sta YSC-l (Plates 3 and 4), located immediately north of on"

of the Chesapeake Bay Bridge-Tunnel islands, is affected by local turbu-

lence, eddies, and constriction caused by the island creating anomalies
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to the true flow characteristics associated with channel deepening. Data

from this station must be viewed with reservation. Indicated variations

at sta FM-i (Plates 25 and 26), in upper Baltimore Harbor, must also be

viewed cautiously. Velocities at this station were generally lower than

the error band of the measurements. At such low velocities, phase values

are especially sensitive to erroneously high values. Low velocities also

prevail at other stations; thus phase values should not be considered at

sta FM-i, the bottom depth at sta OD-4 during both neap tide tests, mid-

dle and bottom depths at sta BC-2 during all four tests, and middle and

bottom depths at sta BC-4 during the 30,O00-cfs neap tide test.

23. Over 75 percent of the remaining 132 observations (Plate 31

and Table 11) had base and plan phase values within 10 deg of one another

(approximately 20 min prototype time, close to the confidence of this

measurement). The largest phase variations were found at RSC-2 and OD-4

during the 120,O00-cfs spring tide test (Plate 31). Time of maximum

velocity during the plan test occurred up to 66 deg later than during

the base test (over 2 prototype hours or 72 real seconds). Isolated

variations of this type and of this magnitude are difficult to understand

and no logical explanation can be provided after a thorough review of raw

data and boundary control reports. Sta BC-4 was the only other station

to indicate phase differences greater than ±30 deg. These differences

may be the result of errors associated with the drogue measurements.

Later arrival time for the plan test again occurred during the larger

discharge spring test. The larger discharge neap test and lower dis-

charge spring test indicated earlier times of occurrence for the plan

tests compared with the base tests at this station. Earlier times of

maximum velocity for the plan test also occurred at sta CC-2 during the

larger discharge neap tide test.

24. In general, the fitted cosine curve approximates observed

velocities to a reasonable degree. At sta YSC-1, however, the observed

peak flood velocities are generally underestimated (Plates 3 and 4).

Variations between the fitted peak velocity and the observed velocity

are greatest during the plan tLsts, especially during the larger range

tide. These perturbations from Lile ideal cosine can be attributed to
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constriction and/or eddy effects associated with the Bay Bridge island.

25. Only subtle differences were indicated for plan-to-base com-

parisons of amplitude, offset, maximum flood, and maximum ebb values

(Plates 31 and 32). Over 90 percent of these comparisons for each of

the parameters were within ±0.40 fps, the error band for these

measurements.

26. Amplitude values provide an indication of total water flow in

the immediate vicinity of each measurement point (half the range between

peak fitted velocities) without regard to flow dominance. Largest ampli-

tude variations were at sta YSC-l during the spring tide tests

(Tables 7-10); measurements at bottom depths indicated larger velocities

during the plan test, around 0.50 fps greater, while plan surface mea-

surements were up to 0.60 fps less than those of the base test. Overall,

96 percent of all amplitude comparisons were within ±0.40 fps, 86 per-

cent were within ±0.25 fps, and 47 percent were within ±0.10 fps

(Table 12). A general tendency of lower amplitudes during the plan

tests was indicated. This meets expectations of lower velocities associ-

ated with channel deepening and increased crosssectional area.

27. Offset values provide an indication of flow dominance. Care

must be used in the interpretation of this parameter. For example, an

increase in flood dominance may be the result of either an increased

flood (duration or amplitude) or a decreased ebb or a combination of

both. Over 97 percent of all plan offset values were within ±0.40 fps

of comparative base values, 92 percent of the values were within ±0.25

fps, and 66 percent of the observations were within ±0.10 fps (Table 13).

A general trend of slightly increased flood dominance (between 0.10 and

0.25 fps) was indicated for lower bay stations (below the Potomac River).

Upper bay stations generally showed little (±0.10 fps) offset variations

between base and plan tests.

28. Offset and amplitude values were combined to obtain maximum

ebb and maximum flood fitted velocities (Plate 32) to ascertain which of

the above scenarios exist. Over 90 percent of plan maximum flood and

maximum ebb velocities were within ±0.40 fps of base velocities, around

77 percent were within ±0.25 fps, and over 42 percent were within
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±0.10 fps (Tables 14 and 15). In general, flood velocities increased

for lower bay stations but decreased for upper bay stations when com-

paring plan tests with base tests. Plan test ebb velocities throughout

the estuary indicated a general trend of reduced velocity compared with

base tests.

29. In summary, no major velocity variations were indicated as a

result of channel deepening; however, slight trends in yelocity char-

acteristics may indicate subtle variations in the hydrodynamics of the

system. The overall reduced velocity (amplitude) at each depth during

the plan tests is consistent with increased cross-sectional area associ-

ated with channel deepening. The slight trend of increased flood domi-

nance (higher flood and lower ebb velocities) at the lower bay stations

indicates the possibility of additional salt intrusion into the main

estuary along the deepened channel. A return flow of estuarine water

may exist in the shallower nonsampled areas.
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PART III: DYNAMIC SALINITY AND TIDE-HEIGHT TESTING

Test Conditions

30. Salinity and tide-height testing was designed to examine plan-

to-base variations during naturally occurring dynamic conditions asso-

ciated with a repetitive 28-lunar-day (56 cycle) variable tide sequence

and a 2-1/2-year freshwater discharge hydrograph stepped weekly. Con-

stant steady-state boundary conditions used during the prelead-in por-

tion of the base and plan tests include an ocean repetitive cosine tide

with a 4.25-ft range, a 5.90-ft range C&D Canal repetitive cosine tide

with a zero net flow plane, and a 150,000-cfs total bay freshwater dis-

charge. Ocean source salinity was maintained at 32.5 ppt throughout

each test while the C&D Canal source salinity (Reedy Point) was allowed

to vary between 2 and 5 ppt before adjustments were made. The computer-

controlled dynamic portion of each test was begun once a relatively

stable salinity distribution was observed at the 11 salinity monitoring

stations. The total bay freshwater discharge hydrograph for this

2-1/2-year dynamic period is presented in Table 16 and illustrated'by

Figure 6. Similar information is available for each inflow location

(Gulbrandsen 1979).*

Inflows

31. Hydrograph conditions simulated prototype weekly average

freshwater discharges for each inflow location from April 1964 (hydro-

graph step 1) through September 1965 (hydrograph step 77), a relatively

low-flow or drought period, followed by a smooth, synthesized "average"

or "modal" year hydrograph provided by the Baltimore District. Due to

inability to measure extremely low discharges (below 74 cfs prototype),

flows associated with inflow locations 2 and 3 were added through

inflow 4, inflow 9 was added to inflow 10, and flows associated with in-

flow 18 were discharged through inflow 19. A computer failure during

the base test in the middle of the modal year hydrograph (lunar day 711,

Gulbrandsen, op. cit.
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hydrograph step 106) required manual inflow settings for the remainder

of the test. A similar procedure was followed during the plan test to

ensure compatible conditions. As in velocity testing, the long-term

average discharges for Sparrows Point Steel Manufacturing Plant (186 cfs)

and Back River Sewage Treatment Plant (58 cfs) were continuously added

to the model during both base and plan tests.

Tides

32. The reconstructed, 12-constituent, 28-lunar-day source tide

repeatedly generated from the ocean tide generator during the dynamic

testing portion is illustrated in Figure 7. As shown, this tidal se-

quence includes two spring tides, a high spring and a low spring, and two

approximately equal neap tides. The compatible 5-constituent, 28-lunar-

day source tide generated concurrently from the C&D Canal tide generator

is illustrated in Figure 8. After loss of computer control during the

base test at lunar day 711, repetitive cosine tides were established at

the ocean and C&D Canal (4.25-ft range and 5.90-ft range, respectively)

and maintained throughout the remainder of the test. A similar failure

was simulated and procedure followed during the plan test.

33. A long-term zero net flow condition for the C&D Canal was de-

sired. Flow through the canal is influenced by, and is sensitive to,

differences in water level elevations between both ends of the canal,

caused by such factors as Susquehanna discharge and meteorological

events. Four separate Susquehanna discharges (80,000, 52,000, 38,000

and 5,000 cfs) were used during preliminary steady-state cosine tide con-

trol operation to determine the required C&D Canal tide plane needed to

achieve the desired zero net flow for each discharge condition. It was

felt that this cosine tide could be used to approximate average discharge

conditions of the 28-lunar-day tide. These established plane adjustments

were used during the indicated periods of the hydrograph (Figure 6) in

an attempt to achieve the desired long-term zero net flow condition,

without risking incompatible base and plan tests, due to boundary control

differences associated with unscheduled plane adjustments.

Performance

34. A complete documentation of all boundary controls during these
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tests is available (Gulbrandsen 1979).* Although the following perturba-

tions did occur between base and plan tests, overall boundary control was

considered acceptable, with little or no indicated impacts to final test

results. Variations in C&D Canal net flows produced no significant im-

pacts on major test findings. Peristaltic pumps and tubing used at the

Sparrow Point and Back River effluent discharge points proved inefficient

and required frequent adjustment, however, the variations in these flows

are felt to be insignificant to test results. Discharge variations from

the regular inflow devices are also thought to have minimal impact to

test results. Despite improvements to the induced-mixing bubble line,

bubble rate tended to decay with time due to formation of salt deposits

at the air-water interface. Information to assess impacts on salinity

during these tests is not available; however, tests performed at the

model (spring 1980) indicate that salinity characteristics are relatively

insensitive to variations in bubble rate.

Test Data and Results

'T ides

35. Ten automatic water-level detectors were located at key sta-

tions throughout the model (Figure 1). Water-level elevations were re-

corded at hourly prototype intervals (every 36 sec, real time) and stored

on flexible diskettes. Manual point gage measurements were not taken.

Analysis of this information, after testing was completed, indicated sev-

eral unforeseen difficulties. Condensation on probe face plates caused

the probe to rise above the desired distance from the water's surface

and resulted in apparent drifting tidal planes. Sensitivity adjustments

to probes, to overcome problems of interference from surface waves caused

by the induced-mixing iir bubbles, created additional problems of trunca-

tion to either peaks or troughs of measurements at variable frequencies.

These adjustments also increased the error band width of the measurement.

In most cases, associated errors are random and uncorrectable. For

* Gulbrandsen, op. cit.
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these reasons, obtained tidal data were considered unreliable and no ad-

ditional analyses were performed.

Salinities

36. Salinity monitoring stations were sampled during all aspects

of base and plan testing for assessment of stability during pre-lead-in

and for sampling conformity with previous and future testing. Salinity

values for the salinity monitoring stations are available at the model

in the form of tables and plots, however, due to their low sampling

priority (boundary control and test sampling had priority), many gaps

exist between base and plan values. Salinity sampling at the 68 desig-

nated test stations (Figure 9) began on lunar day 168, following 6 months

of dynamic lead-in conditions (hydrograph steps 1-25 from April through

September 1964 and repetitive 28-lunar-day tide). Slack-after-flood

samples were collected at approximately weekly intervals, corresponding

to spring and neap tidal cycles, throughout the remaining portions of

each test. Figure 7 illustrates the sampling schedule for a typical

28-lunar-day sequence. Tides 1, 15, 28, and 44 of each 56-cycle sequence

were sampled. This schedule was continued during cosine tide generation

following the computer failure. To obtain ranges of salinity, slack-

after-ebb samples were collected following slack-after-flood sampling

fouz times during both water year 1965 and the modal water year. These

data are tabulated and available (Gulbrandsen 1979).*

37. Stations were sampled at two to five depths, depending on

local water depths. Bottom sampling depths were adjusted accordingly,

to maintain same relative sampling depth, for the plan test at those

stations located in areas of bathymetric change. All other sampling

points remained in place. Sta FM-1 (in the Patapsco River) was relocated

from PR-3-1 at lunar day 647 during both base and plan tests. Station

and sampling depths are presented in a relative geographical order, from

lower bay or system to upper bay or system in Table 17. In the Patapsco

River area, stations within the main ship channel are first presented in

an up-channel order, followed by stations in side channels and adjacent

* Gulbrandsen, op. cit.
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areas in a downriver order. This station order is maintained throughout

the remaining portions of this report.

38. Separate base, plan, and plan minus base time-history salin-

ity plots are illustrated for each of the 68 stations in Plates 33-100.

Based on presented data, experience, and laboratory experiments, each in-

dividual salinity measurement during this study is generally felt to be

accurate within 0.5 to 1.0 ppt. A ±2 ppt interval is indicated on each

time-history salinity difference plot to aid in interpretation of the

data. Tables listing each of the salinity values by lunar day are avail-

able (Gulbrandsen 1979).*

39. For summary purposes, the two years of salinity testing were

divided into the following eight convenient periods based upon natural

variations in freshwater discharge:

Hydrograph Lunar
Period Steps, Weeks Days

1 26-37 168-249

2 38-51 249-344

3 52-63 344-425

4 64-77 425-520

5 78-91 520-615

6 92-105 615-709

7 106-111 709-750

8 112-129 750-871

Period I corresponds to the prototype low-flow period October through

December 1964, period 2 corresponds to the increasing discharge period

January through March 1965, period 3 represents the decreasing flow

period from April through June 1965, and period 4 represents the low

flow period July through September 1965. The modal water year was also

divided into four periods. Period 5 represents the first 14 weeks of

increasing freshwater discharge; period 6 represents the next 14 week

period of higher discharges, the last two weeks of which were of

* Gulbrandsen, op. cit.

30



decreasing discharge although still greater than 150,000 cfs; period 7

corresponds to the loss of tide control and the following 6-week period

during a falling discharge; and period 8 corresponds to the remaining

18 weeks of modal year discharge under cosine control (also a falling

discharge period). These eight periods are indicated in Figure 6.

40. Frequency-of-occurrence tables were prepared to provide a de-

tailed station by station summary of plan minus base salinity differences

for each period. These tables are not included in this report, but are

on file at CBM, WES, and NAB. The number of salinity difference values

occurring within each of the following 11 intervals is tabulated for

surface, middle, and bottom depths:

Values less than -10 ppt

-10 < values < -5
-5 < values < -3
-3 < values < -2
-2 < values < -1
-1 < values < 1
1 < values < 2
2 < values < 3
3 < values < 5
5 < values < 10 and

Values greater than +10 ppt

41. Table 18 provides a final combined summary of salinity varia-

tions occurring during the variable tide portion of the test (periods

1-6) for each station at surface, middle, and bottom depths. Percent

frequency-of-occurrence values within each salinity difference interval

are presented in this table. Figure 10 graphically summarizes for each

station at surface, middle, and bottom depths the percent frequency of

occurrence of plan minus base salinity differences greater than ±2 ppt.

Discussion of Results

42. Time-history plots (Plates 33-100) illustrate various salin-

ity trends at each of the 68 stations. Three basic trends in base and

plan salinity time-histories are considered to provide a basis for
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comparing base versus plan results. The dominant underlying trend at

most stations is an inverse relationship between freshwater discharge

and salinity concentration--as discharge increases salinity decreases.

Surface layers show greatest sensitivity to freshwater discharge with

largest salinity changes over time. This sensitivity generally de-

creases toward the ocean entrance and with increasing water depth.

Deeper depths in the lower bay, for example, are somewhat insensitive to

freshwater discharge variations.

43. In addition to this discharge response, a superimposed shorter

frequency response is indicated at many stations. This salinity response

is associated with neap-spring tidal cycle variability, producing a saw-

tooth pattern in time-history salinity plots. Lower bay stations, below

the main bay constriction at range CB-4 (Figure 9), generally appear to

be more sensitive to this tidal response characteristic with neap-spring

salinity variations increasing with approach to the ocean entrance and

with increasing depth below the surface. Bottom depths at the three sta-

tions sampled along the entrance range (CB-0-1, CB-0-2, and CB-0-3) and

the adjacent two Cape Henry Channel sta CPH-1 and CPH-2, however, show

smaller salinity variations (about I ppt) while surface measurements

show greatest responses (Plates 33, 34, 35, 36, and 37, respectively).

Bottom depths at these stations show reduced sensitivity to tidal cycle

variations due to their closeness to the ocean boundary. Some of the

largest tidal cycle variations occur at sta CB-0-2, where neap-spring

surface salinity variations up to 7 ppt are indicated. Figure 11 (from

Plate 34) illustrates the plan test time-history salinity plot with ap-

propriate monthly tide (spring,, neapl, spring2 , or neaP 2 ) labeled for

surface samples.

44. In the lower bay tributaries sampled, the two James River sta-

tions illustrate the greatest tidal sensitivity, greater than any other

stations sampled in the model. Figure 12 (from Plate 47) illustrates the

plan test salinity time history for sta J-1-3. Sta Y-l-2 (Plate 49), in

the entrance to the York River, indicates large salinity variations only

during the base test. York River sta Y-l-l, Mobjack Bay sta MB-1-1 and

MB-1-3, Rappahannock River sta R-l-1 and R-l-2, and Potomac River
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sta PO-1-I, PO-1-3, and PO-1-5, show smaller to no neap-spring salinity

variability (Plates 48, 50, 51, 55, 56, 63, 64, and 65, respectively).

45. Salinity sensitivity to the lunar monthly tidal cycle tends

to decrease with distance above the York Spit Channel, then it increases

again in the upper bay above range CB-5. Sta CB-3-4 (Plate 60), located

in the main channel below the Potomac River, is an exception showing a

distinct surface response, possibly related to interaction with Potomac

Estuary dynamics. Sta CB-3-6 and CB-3-8 (Plates 61 and 62), and sta-

tions along ranges CB-4 and CB-5 (Plates 66-72) generally show much re-

duced to little detectable salinity variation with respect to the neap-

spring cycle. Stations in Craighill Channel, CC-I, CC-2, and CC-3

(Plates 75, 76, and 77, respectively), above range CB-5 and the Chesa-

peake Bay Bridge at Annapolis, reveal a slightly increased middepth sa-

linity response to the monthly tidal cycle compared with ranges CB-4 and

CB-5. The upper eastern shore station sampled in the Chester River

(sta CH-l-1. Plate 73) also illustrates some neap-spring salinity vari-

ability. Stations within the Patapsco River (Plates 78-90), and the

Magothy River station (MA-I-1, Plate 74), immediately below the Patapsco

River, generally illustrate little to no distinct neap-spring sensitiv-

ity. Stations at upper bay ranges CB-6 and CB-7 (Plates 91-100) again

illustrate distinct salinity response to the monthly cycle, although

salinity variations are not as great as those of the lower bay stations.

Figure 13 (from Plate 94) illustrates the plan test time-history salinity

plot for sta CB-6-3 with the appropriate tide labeled on middepth

observations.

46. Interaction with changing discharge and missing sampling

values complicate interpretation of salinity responses to the monthly

tidal cycle. As indicated in the time-history salinity plots, variations

in response characteristics exist within stations and from station to

station throughout the model. Some stations appear unaffected by the

variable tides, some stations appear better mixed during each spring tide

and more stratified during each neap tide (Figure 13), other stations

appear better mixed only during the larger spring tide (S1 , Figure 11),

and many stations show various combinations of the above cases. At most
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stations, salinity structure and distribution are noticeably different

during the last 150 lunar days of testing under repetitive cosine tide

generation than during variable tide generation. Figure 12, James

River sta J-1-3, provides an excellent example.

47. The dynamics of salinity response to variable tides may have

a major influence on salinity intrusion and distribution within the

estuary. Summarization of salinity conditions by averaging over monthly

sampling time periods may oversimplify and eliminate these important

variations. Little is presently known about the processes and re-

sponses of this complex tidal neap-spring salinity interaction, and it

is beyond the intent and scope of this study to elaborate on this phe-

nomenon. Additional research is necessary to fully understand the

mechanics and associated implications of neap-spring tidal response

characteristics.

48. The third and final consideration given to base and plan time-

history salinity values are isolated perturbations from the generally

consistent response trends to freshwater discharge and neap-spring tidal

cycle variability. These perturbations are less numerous, and salinity

variations over time are more gradual during the plan test. It is often

difficult to distinguish small response differences associated with chan-

nel deepening from anomalous values associated with possible sampling,

analysis, and/or boundary control problems. As an example, one of the

most obvious base and plan response differences at most stations through-

out the model occurs during the high discharge period of water year 1965

where base test salinities generally illustrate a more abrupt response

to increased discharge than during the plan test. More precise boundary

control during a plan test generally results through procedures and ex-

perience developed during preliminary base tests, for example, better

anticipation of required sump adjustments for freshwater hydrograph con-

ditions. Although the Baltimore Harbor base test was the first experi-

ence with this drought-type hydrograph, no major boundary control prob-

lems were identified; thus, boundary control differences between base

and plan tests do not seem to account for this type of "random" salinity

response difference.
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Reliability of results

49. These three basic salinity response characteristics (varia-

tions to discharge, to tide, and isolated perturbations) are considered

in defining a basis for discussing plan and base differences. The error

band for individual plan-to-base salinity value comparisons (comparing

two values each of which has a 0.5 to 1.0 ppt error band) in this study

is considered to be between I and 2 ppt. Consistent trends during spe-

cific periods or conditions, illustrated on time-history difference plots,

adds credibility to individual comparison values and increases their

overall reliability (i.e. reduces error band toward the smaller value).

Frequency-of-occurrence data (Table 18 and Figure 10) summarize plan-to-

base salinity differences during the variable tide portion of the study

and enable a quantitative classification approach. Stations demonstrat-

ing "appreciable" plan-to-base salinity variations are defined as those

stations with 10 percent or more of their surface, middle, or bottom

depth comparison values greater than ±2 ppt. Plates 33-100, Table 18,

and Figure 10 should be referred to in the following discussions.

Lower bay

50. Surface salinity differences greater than ±2 ppt occur with

substantial frequency at Chesapeake Bay entrance sta CB-0-1 and CB-0-2

(Plates 33 and 34). These differences are associated with random re-

sponse and do not illustrate any distinct trends or patterns. No dis-

tinct trends in plan-to-base salinity differences are apparent at Cape

Henry Channel sta CPH-1 and CPH-2 or adjacent entrance sta CB-0-3. Ran-

dom responses do exist, for example, during the high discharge period of

water year 1965, however, these variations do not occur with substantial

frequency. The six stations located in the maintained York Spit Channel

area (YSC-1, YSC-2, CB-1-5, YSC-3, YSC-4, and YSC-5, Plates 38-43) show

a slight tendency toward increased salinity during the plan test. Only

surface depths at sta YSC-1, YSC-2, and YSC-3 indicate appreciable salin-

ity increases during the plan test compared with the base test. Although

differences again appear to be associated with random responses, many of

the individual increases are the result of more pronounced salinity peaks

at the time of spring tides for the plan than for the base. Salinity
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differences at sta CB-1-7 and CB-1-2 (Plates 44 and 45), respectively

east and west of York Spit Channel, are generally within the ±2 ppt band.

51. The two James River stations (Plates 46 and 47) illustrate a

trend of reduced salinity in the deep water during the plan test. The

bottom depth, 43 ft, at sta J-1-2 shows a reduced salinity intrusion

characteristic during the plan test, whereas the surface indicates in-

creased salinity. At sta J-1-3 the three-quarter depth sample, also at

43 ft, reflects a similar reduced salinity intrusion (approximately

20 percent of the plan test observations at this depth are at least 2 ppt

fresher than base test observations) while no appreciable plan-to-base

salinity variations exist at the 72-ft bottom depth. York River sta

Y-l-2 (Plate 49) also illustrates an appreciable bottom salinity intru-

sion decrease during the plan test. The well developed neap-spring

salinity variability of the base test is noticeably missing during much

of the plan test. No conclusive explanations can be provided for the

apparent reduced bottom salinity intrusion for these lower tributary sta-

tions, although channel deepening and/or variations in neap-spring char-

acteristics associated with channel deepening may be the cause. Salinity

differences at the other York River sta Y-l-l, and Mobjack Bay sta MB-1-1

and MB-1-3 are generally within the ±2 ppt band.

52. The remaining lower bay stations sampled within Rappahannock

Shoal Channel (sta RSC-I, RSC-2, and RSC-3) and along main bay ranges

CB-2, CB-3, and CB-4 illustrate no appreciable plan-to-base salinity dif-

ferences. The only distinct variations indicated, middepth at sta CB-2-5

(Plate 53), are the result of an inadvertently changed sampling depth

from 12 ft during the base test to 22 ft during the plan test. Rappahan-

nock River sta R-1-1 and R-1-2 (Plates 55 and 56) also indicate no appre-

ciable or distinct salinity differences; random responses are evident

during the high-flow period of water year 1965 where plan test surface

values appear to have reacted to increased discharge sooner and more

gradually than during the base test. Potomac River stations illustrate

a similar but increased random response trend. Surface values are quite

erratic in both base and plan tests. Appreciable salinity differences

are indicated at sta PO-1-I where plan test surface values are lower
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during high-flow periods and higher during low-flow periods. A similar,

but less pronounced, pattern was observed at sta PO-1-3. Plan test sur-

face salinity values are also appreciably lower than base test values

during high-flow periods at sta PO-1-5.

53. An overall view of lower main bay base and plan salinity dif-

ferences indicates many more occurrences of positive values (increased

salinity during plan test) than negative values on the plan minus base

differences plots. This trend generally holds true at channel stations

where the depth was increased and at bay or river stations where there

was no depth change. Most of these differences, however, are within the

t2 ppt band.

Upper bay

54. Major plan-to-base salinity variations are found at upper bay

stations above the constriction at range CB-4. Only Magothy River

sta MA-l, and sta CB-7-1 have less than 10 percent of their comparison

salinity values larger than ±2 ppt. The remaining 30 upper bay stations

illustrate appreciable plan-to-base salinity differences.

55. Sta CB-5-2 and CB-5-6 (Plates 69 and 72), away from the natu-

rally deep channel at this range, illustrate a slightly more stratified

water column during the plan test with a fresher surface layer and

saltier bottom layer compared with the base test. This trend becomes

better developed with time into the modal year. With the exception of

the surface layer, sta CB-5-4 (Plate 70) adjacent to the natural channel

indicates a general trend of increasing salinity difference with time

and increased depth; i.e., plan waters become saltier than base waters

with time and bottom salinity differences (plan minus base) are greater

than at any other depth. A similar trend of increasing salinity differ-

ence with time is indicated at sta CB-5-5 (Plate 71). The middepth

values (43- and 57-ft depths) at this station illustrate the largest

salinity differences. This is the first station with more than 25 per-

cent of the difference values greater than 2 ppt. Over 40 percent of

the middepth differences are greater than 2 ppt. Plan-to-base salinity

differences are somewhat smaller (below appreciable occurrences) at the

deepest depth sampled than at the middle depths.
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56. Salinity differences are again found to increase with time at

the eastern shore Chester River sta CH-1-1 (Plate 73). Bottom depth

salinity difference values increase just enough during the latter parts

of the plan test to classify this station as illustrating appreciable

plan-to-base salinity differences. Across the bay at the western shore

Magothy River sta MA-I-I (Plate 74) no appreciable plan-to-base salinity

differences are found, although during high-flow periods plan test salin-

ities are somewhat lower than base test salinities.

57. Plan-to-base salinity differences are found to increase pro-

gressively up Craighill Channel, in the main bay, toward the entrance to

Patapsco River. Middle and bottom depths at sta CC-I (Plate 75) indi-

cate substantially saltier water during the plan test. Over 23 percent

of middepth and 23 percent of bottom depth plan test salinity values

were greater than base test values by more than 2 ppt. Surface samples

during the plan test high-flow periods are somewhat fresher than those

of the base test. This trend increases at sta CC-2 and CC-3 (Plates 76

and 77) with plan test surface layers illustrating substantially fresher

conditions for longer periods of time, 26 and 42 percent of the observa-

tions, respectively, and with middle and bottom depths illustrating ad-

ditional increases in salinity during the plan test. Over 70 percent of

the plan test bottom values were saltier than base test values by more

than 2 ppt at sta CC-3. Positive bottom and middepth salinity differ-

ences (higher salinity druing plan test) at these three stations show a

direct relationship with the hydrograph--as freshwater discharge in-

creases or decreases so do salinity differences, and negative surface

differences (i.e. increased freshness during plan test) exhibit an in-

verse relationship with discharge. Thus, plan test stratification

(surface-to-bottom salinity variation) tends to increase during high-

flow periods and tends to decrease during low-flow periods to a slightly

higher stratification than the base test.

58. In general, a similar consistent response trend of increasing

salinLty difference progressing up the main Baltimore Harbor Channel in

Patapsco River (sta PR-1-3, BC-3, BC-4, PR-2-2, PR-3-1/FM-l, FM-2, and

i'!C-1, Plates 78-84 exists, with saltier middle and bottom depths during
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the plan test. Bottom depths at these seven main channel stations il-

lustrate the greatest salinity increases with more than 80 percent of

the plan test values saltier than base test values by more than 2 ppt.

In fact, over 55 percent of bottom depth plan test salinity values are

more than 5 ppt saltier than base test values at sta PR-2-2, PR-3-1/FM-I,

and EC-l in upper Patapsco River. Surface differences have the tendency

to decrease with distance up the river, although most stations indicate

appreciably fresher water during the plan test compared with the base

test. Surface and bottom depth salinity values at sta FM-2 are quite

erratic during the plan test; however, appreciably saltier conditions

are indicated throughout the water column during the plan test. Surface

salinity values at sta'EC-l, the uppermost main channel station sampled

in Patapsco River, also indicate some erratic plan test fluctuations.

Over 16 percent of the comparison observations indicate appreciably

fresher plan test surface values compared with base test values while

almost 24 percent of the observations indicate appreciably saltier plan

test surface values.

59. Figure 14 (from Plates 78, 81, and 84) summarizes the general

trend of increasing salinity differences with distance up the Patapsco

River for selected main channel stations. The trend of increasing

salinity difference with time is also indicated. Salinity differences

at sta PR-2-2 provide an excellent example of the relationship between

discharge and stratification, with fresher surface and saltier middle

and bottom depths during high-flow periods of the plan test. Stratifi-

cation during high-flow periods is drastically higher for the plan test

than for the base test but only slightly higher during low-flow periods.

Sta PR-2-2, PR-3-1/FM-1, and EC-l in the upper Patapsco River illustrate

the greatest salinity differences associated with channel deepening. Be-

tween lunar days 249 to 709, periods 2 through 6, bottom plan test sa-

linity values at these stations are on the average 6 to 7 ppt saltier

than base test values. Salinity differences are greatest during high

flow periods, with bottom plan test values over 10 ppt greater than

base test values during the modal year just prior to loss of tide con-

trol. This characteristic of increasing salinity difference during
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high-flow periods is an example where averaging over specific predeter-

mined time periods without full consideration of the freshwater inflow

may result in anomalous values, reduced salinity variability, and im-

proper interpretations.

60. Sta FB-l in Ferry Bar Channel and sta-CBC-1 (Plates 85 and

86) in Curtis Bay Channel, both in side channels of the upper Patapsco

River, indicate appreciably increased salinity throughout the water col-

umn during the plan test. Bottom depths show the greatest salinity in-

creases. At the other side channel sta SP-l (Plate 88), located adjacent

to Sparrows Point, plan test surface values are appreciably fresher

while middle and bottom depths are appreciably saltier than base test

values. More than 70 percent of plan test bottom values at these side

channel stations are greater than 2 ppt saltier than base test values

and more than 15 percent of these values are greater than 5 ppt saltier.

As at other stations in this area, the degree of stratification at these

stations is much greater during the plan test high-flow periods than for

the base test and slightly greater during low-flow periods. A general

trend of increasing plan test salinity with time is indicated in salin-

ity difference plots for this group of Patapsco River stations.

61. Salinity differences at sta PR-2-1 (Plate 87), in shallow

water away from the main channel in mid-Patapsco River, are much reduced

from those at sta PR-2-2 (Plate 81) in the main channel. The 14-ft-

depth bottom sample at sta PR-2-1 indicates a general trend of increased

salinity difference over time with plan test values becoming appreciably

greater than base test values. Approximately 64 percent of plan test

bottom values are between 2-5 ppt saltier than base test values. Over

14 percent of plan test surface values are appreciably fresher than base

test values during high-flow periods and 13 percent of the plan test

values are appreciably saltier than base test values during the low-flow

period between water year 1965 and the modal year. Stratification is

greater for the plan test than for the base test during high-flow peri-

ods, but essentially unchanged during low-flow periods.

62. Salinity differences at sta PR-1-2 and PR-I-1 (Plates 89 and

90) in shallow water at the entrance to Patapsco River also indicate a
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decreased response with channel deepening compared with main channel

sta PR-I-3 (Plate 78). Reduced but appreciable plan-to-base differences

are found at bottom depths for the shallow-water stations with less than

30 percent of plan test values appreciably saltier than base test values.

Appreciable surface differences are found only at sta PR-1-2 with 23 per-

cent of plan test values fresher than base test values by more than

2 ppt. Stratification changes are similar to those for sta PR-I-3.

63. Sta BC-2 and BC-i, east of Patapsco River in the maintained

main bay connecting channel leading from Patapsco River to the C&D Canal,

illustrate a greater frequency of appreciable plan-to-base salinity dif-

ferences compared with sta PR 1-2 and PR 1-1. Middepth comparisons il-

lustrate the greatest differences with over 30 percent of plan test

values saltier than base test values by more than 2 ppt. Sta BC-2,

closer to Patapsco River, illustrates greater differences than sta BC-I.

These two stations are the most upstream to illustrate distinct plan-to-

base differences with respect to stratification responses.

64. With the exception of the surface at sta CB-6-1 and the bot-

tom at sta CB-7-3, distinct salinity differences are not obvious in base

and plan time-history plots for the remaining main bay stations along

ranges CB-6 and CB-7 (Plates 93-100). Much reduced but still appreciable

plan-to-base salinity differences are indicated for bottom depths at most

of these stations. Plan test salinity differences are again found to

increase with time. Sta CB-6-1, in shallow water adjacent to Craighill

Channel, illustrates about a 5-ppt surface salinity decrease during the

plan test modal year compared with the base test; over 30 percent of

plan test surface salinities are fresher than base test values by more

than 2 ppt, over 15 percent of these values are greater than 5 ppt

fresher. The bottom depth at this station does not illustrate appreci-

able plan-to-base salinity differences. The largest bottom saiinity dif-

ferences at sta CB-7-3 also occur during the modal year. About 25 per-

cent of the plan test bottom values are saltier then base test values by

more than 2 ppt.

65. To summarize, 30 of the 32 upper bay stations (above the con-

striction at range CB-04) illustrate appreciable plan-to-base salinity
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differences. Fresher surface layers and saltier middle and bottom

layers are indicated following channel deepening. Plan test stratifica-

tion increases substantially during high-flow periods and tends to de-

crease during low-flow periods generally to slightly higher stratifica-

tion than the base test. A general trend of increasing salinity with

time, comparing plan-to-base tests, is illustrated at most upper bay

stations. Salinity differences increase progressively up the main bay

channel and into the Patapsco River. The seven deepened main channel

stations in the Patapsco River illustrate the greatest salinity differ-

ences with over 50 percent of the plan test bottom values saltier than

base test values by more than 5 ppt. Largest increases, over 10 ppt,

are found at bottom depths during the high-flow period of the modal year

at the three upper channel stations. Salinity differences decrease with

distance from deepened channels toward shallow-water stations. Plan-to-

base salinity and vertical distribution differences during dynamic condi-

tions indicate possible changes to upper bay and especially the Patapsco

River circulation as a result of proposed channel deepening.
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PART IV: SUMMARY AND CONCLUSIONS

66. No major plan-to-base velocity variations are indicated at

any of the sampled stations. Slight trends in velocity differences

associated with channel deepening indicate subtle variations in the

hydrodynamic characteristics during the steady-state tests. The general

tendency toward reduced velocity (amplitudes) during plan tests meets ex-

pectations of increased cross-sectional area associated with channel

deepening. A general trend of slightly increased flood dominance (be-

tween 0.10 and 0.25 fps) is indicated at lower bay stations (stations

below the constriction at range CB-04, adjacent to Patuxent River) dur-

ing plan tests compared with base tests. This changed flow distribution

is associated with an increased flood velocity and a decreased ebb ve-

locity. The deepened channels leading to Baltimore Harbor can enhance

salinity intrusion into the main estuary. A return flow of estuarine

water may exist in the shallower nonsampled areas.

67. The few upper bay stations sampled for velocity generally

show little dominance variations (±0.10 fps) with both flood and ebb

velocities somewhat reduced during the plan test. Velocities in the

Patapsco River are quite low during both base and plan tests requiring

special drogue velocity measurements. No shift in flow dominance is

identified that can be used to substantiate or refute changes to, or the

presence of, a three-layer flow circulation pattern within the Patapsco

River. Hydrodynamic testing during dynamic conditions associated with

variable freshwater discharges and variable tides is required for de-

tailed analysis of this circulation phenomenon.

68. Three basic trends in salinity time-histories exist during

dynamic salinity testing that can be effected by channel deepening. The

predominant underlying trend at most stations is an inverse relationship

between freshwater discharge and salinity concentration--as discharge

increases salinity decreases. This sensitivity to discharge generally

decreases down the bay toward the ocean entrance and with increasing

water depth. Superimposed on this discharge response is a shorter fre-

quency response associated with neap-spring tidal variability producing
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a sawtooth pattern in time-history salinity plots. Sensitivity to this

tidal response generally increases with approach to the ocean entrance

and with increasing depth below the surface. Little is presently known

about the processes and responses of this complex tidal neap-spring in-

teraction although it is shown to have significant influence on salinity

.ntrusion and distribution within the estuary. The third trend is a ran-

dom response or noise in the data, the cause of which is not identified.

69. This study indicates some major and some minor plan-to-base

salinity differences associated with channnel deepening. For the pur-

poses ot this study, stations demonstrating appreciable plan-to-base

variations are defined as those stations with 10 percent or more of

their surface, middle, or bottom depth comparison values greater than

t2 ppt. Lower main hay stations, from the constriction at range CB-04

and below, illustrate a slight trend of saltier deeper water during the

plan test although plan minus base differences are not generally greater

than the defined appreciable level. Stations in the bay entrance and

York Spit Channel area indicate appreciable plan-to-base salinity dif-

ferences. These differences, at surface depths, are associated with

random and abrupt responses generally occurring during the base test and

not during the plan test.

70. The other lower bay stations indicating appreciable plan-to-

base salinity differences are located at the entrance to the James, York,

and Potomac Rivers. The two James River stations indicate a reduced

salinity intrusion with fresher deep water during the plan test. The

deeper York River station also indicates an appreciable bottom salinity

intrusion decrease during the plan test and the well-developed neap-

spring salinity variability of the base test is noticeably missing dur-

ing much of the plan test. The reduced salinity intrusion in these

lower bay tributaries may be associated with channel deepening in the

main bay and the Patapsco River. Salinity differences at the other York

River station, Mobjack Bay stations, and Rappahannock River stations in-

dicate some random responses with plan test salinities of a more gradual

nature compared with base test salinities; however, t variations are

not at appreciable levels. Random responses are again at appreciable
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Study investigated parameters that indicate hydrodynamic change associ-

ated with channel improvements. Steady-state (constant freshwater dis-

charge and repeated cosine tide) velocity tests indicate that the

deepened channels resulted in little change to velocity. Subtle varia-

tions in flow distribution at lower bay stations below the Patuxent

River indicate additional intrusion into the main estuary. No shift in

flow distribution can be detected at upper bay or Patapsco River sta-

tions during the steady-state velocity tests.

75. Dynamic (time varying freshwater discharge and repeated

28-lunar-day variable tides) salinity tests indicate major salinity dif-

ferences associated wit'h channel deepening. Most lower bay stations

illustrate a trend of increased salinity after deepening. Plan minus

base salinity differences increase progressively up the deepened channel

in the main bay above Kent Island and into the Patapsco River. High-

flow periods illustrate largest differences with fresher surface and

saltier middle and bottom depths showing increased stratification and in-

creased total salt as a result of channel deepening. Greatest salinity

differences, with plan test values up to 10 ppt saltier than base test

values, occur at bottom depths in the deepened upper Baltimore Harbor

Channel in the Patapsco River. Salinity differences decrease with dis-

tance from the deepened channel. However, a general trend of increasing

salinity with time, comparing plan and base tests, is illustrated at

most upper bay stations.

76. Indicated differences in salinity, intrusion, and vertical

distribution during the model study demonstrates the need for careful

consideration to possible changes in estuarine dynamics and in sediment,

nutrient, and pollutant transport as a result of proposed channel

improvements.
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Table I

FreshwaterDisc harg

Long-Term Average Long-'e rm Hi gh-Flow Low-F low
Inflow Flow Distribution Average Flow Period Period
Number Percent cIs cfs cfs

1 1.0 700 1,160 290

2 0.4 300 497 124

3 1.4 1,000 1,657 414

4 10.3 7,500 12,429 3,107

5 3.8 2,750 4,557 1,139

6 4.1 2,940 4,872 1,218

7 0.6 426 706 177

8 3.4 2,452 4,063 1,016

9 0.8 602 997 250

10 11.0 7,964 13,197 3,299

11 1.3 911 1,510 377

12 0.3 239 396 99

13 0.9 634 1,051 263

14 1.1 830 1,375 344

15 53.2 38,500 63,800 15,950

16 0.5 400 663 166

17 0.7 519 860 215

18 0.3 196 325 81

19 1.2 845 1,400 350

20 2.3 1,675 2,776 694

21 1.4 1,031 1,709 427

Total Discharge 72,414 120,000 30,000



Table 2

Velocity S aTping Depths

Depth, ft Depth, ft
Station Base Plan Station Base Plan

CPH-I 4 4 RSC-2 4 4

23 27 24 26

42 50 44 49

YSC-1 4 4 OD-4 4 4

24 24 42 42

45 45 80 80

CB-1-5 4 4 CC-2 4 4

22 26 22 22

35 48 41 50

YSC-4 4 4 BC-2 4 4

22 26 23 23

40 48 42 42

OD-l 4 4 BC-4 4 4

42 42 21 27

81 81 37 50

OD-2 4 4 FM-I 4 4

31 31 22 26

58 58 40 48

OD-3 4 4

20 20

37 37
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Table 7

Plan Minus Base Velocity Characteristics Differences*

During Spring Tide, 120,000-cfs Inflow Test

Maximum
Depth** Phase Amplitude Offset Velocity, fpst

Range Station ft de fps f Flood Ebb

CPH 1 4 28 -0.18 -0.13 -0.31 -0.04
CPH 1 23 -2 -0.14 0.15 0.00 -0.29
CPH 1 42 3 0.16 0.00 0.16 0.15

YSC 1 4 0 -0.61 0.20 -0.40 -0.82
YSC 1 24 3 0.09 0.08 0.17 0.00
YSC 1 45 4 0.46 0.46 0.93 0.00

CB-1 5 4 -0 -0.25 -0.10 -0.36 -0.15
CB-1 5 22 -11 0.02 0.16 0.19 -0.14
CB-1 5 35 -4 -0.13 0.15 0.02 -0.28

YSC 4 4 2 -0.04 -0.03 -0.07 -0.01
YSC 4 22 1 -0.11 0.11 -0.00 -0.23
YSC 4 40 0 0.00 0.33 0.33 -0.32

OD 1 4 4 0.03 0.12 0.15 -0.09
OD 1 42 -1 0.05 -0.05 -0.00 0.11
OD 1 81 4 0.19 -0.17 0.01 0.37

OD 2 4 -1 -0.12 0.04 -0.08 -0.16
OD 2 31 -4 -0.08 0.01 -0.07 -0.09
OD 2 58 -0 0.14 0.03 0.17 0.10

OD 3 4 -1 -0.10 0.07 -0.03 -0.17
OD 3 20 -1 -0.05 -0.04 -0.10 -0.01
OD 3 37 2 -0.12 0.03 -0.09 -0.16

RSC 2 4 50 -0.23 0.11 -0.12 -0.35
RSC 2 24 45 -0.37 0.02 -0.35 -0.40
RSC 2 44 53 -0.35 -0.04 -0.39 -0.30

OD 4 4 53 -0.19 0.09 -0.10 -0.28
OD 4 42 66 0.02 -0.09 -0.07 0.11
OD 4 80 9 -0.09 0.04 -0.04 -0.14

CC 2 4 -7 -0.28 0.13 -0.15 -0.42
CC 2 22 5 -0.15 0.07 -0.08 -0.22
CC 2 41 16 -0.14 0.01 -0.12 -0.15

BC 2 4 -2 -0.14 0.04 -0.10 -0.19
BC 2 23 (13) -0.04 -0.03 -0.07 -0.01
BC 2 42 (66) -0.16 -0.06 -0.22 -0.09

BC 4 4 34 -0.00 -0.11 -0.12 0.11
BC 4 21 66 -0.06 0.03 -0.03 -0.10
BC 4 37 10 0.03 -0.14 -0.11 0.18

FM 1 4 (-15) 0.04 -0.05 -0.00 0.10
FM 1 22 (-19) -0.01 -0.00 -0.01 -0.01
FM 1 40 (44) -0.10 0.00 -0.09 -0.10

All differences are expressed as plan value minus base value.
* Base test depth; see Table 2 for plan test depth.
t Maximum velocities determined from cosine curve fit of the data rather than

the observed maximum values.
C) Questionable value due to low currents.



Table 8

Plan Minus Base Velocity Characteristics Differences*

During Neap Tide, 120,000-cfs Inflow Test

Maximum
Depth*' Phase Amplitude Offset Velocity, fpst

Range Station ft deg fps fFlood Ebb

CPH 1 4 -0 0.03 0.19 0.23 -0.16
CPH 1 23 -29 0.19 0.23 0.42 -0.04
CPH 1 42 8 0.21 -0.07 0.13 0.29

YSC 1 4 15 -0.14 0.25 0.11 -0.40
YSC 1 24 19 -0.18 0.27 0.09 -0.45
YSC 1 45 24 0.18 0.49 0.68 -0.30

CB-I 5 4 5 0.04 0.06 0.10 -0.01
CB-1 5 22 -10 0.12 0.13 0.25 -0.01
CB-i 5 35 -2 0.20 0.21 0.41 -0.01

YSC 4 4 9 -0.20 0.08 -0.11 -0.28
YSC 4 22 10 -0.22 0.17 -0.05 -0.40
YSC 4 40 -14 0.24 0.42 0.67 -0.18

OD 1 4 1 0.07 -0.10 -0.03 0.17
OD 1 42 -3 -0.10 0.03 -0.07 -0.14
OD 1 81 -0 0.10 0.01 0.11 0.09

OD 2 4 -5 -0.04 -0.01 -0.05 -0.03
OD 2 31 -6 -0.01 0.03 0.01 -0.04
OD 2 58 -6 0.05 0.01 0.07 0.03

OD 3 4 -4 0.07 0.08 0.16 -0.01
OD 3 20 -6 0.09 0.04 0.13 0.04
OD 3 37 -4 -0.16 0.05 -0.11 -0.21

RSC 2 4 4 -0.14 0.01 -0.13 -0.15
RSC 2 24 -3 -0.20 0.12 -0.08 -0.32
RSC 2 44 26 -0.07 -0.04 -0.11 -0.03

OD 4 4 -0 0.15 -0.28 -0.12 0.44
OD 4 42 -14 0.08 -0.03 0.05 0.12
OD 4 80 (27) 0.03 -0.05 -0.01 0.09

CC 2 4 -30 -0.42 0.07 -0.35 -0.50
CC 2 22 -11 -0.01 0.14 0.12 -0.16
CC 2 41 -30 -0.35 -0.09 -0.44 -0.26

BC 2 4 4 0.09 -0.03 0.06 0.13
BC 2 23 (3) 0.01 0.00 0.01 0.00
BC 2 42 (-7) 0.01 -0.00 0.00 0.01

BC 4 4 -39 0.02 0.00 0.03 0.01
BC 4 21 -16 0.03 0.06 0.10 -0.02
BC 4 37 -28 -0.04 0.01 -0.02 -0.05

FM 1 4 (-53) 0.01 -0.00 0.00 0.01
FM 1 22 (4) -0.09 0.03 -0.05 -0.12
FM 1 40 (32) -0.00 0.01 0.01 -0.02

All differences are expressed as plan value minus base value.
" Base test depth; see Table 2 for plan test depth.

t Maximum velocities determined from cosine curve fit of the data rather than
the observed maximum values.

() Questionable value due to low currents.



Table 9

Plan Minus Base Velocity Characteristics Differences*

During Spring Tide, 30,000-cfs Inflow Test

Maximum
Depthf* Phase Amplitude Offset Velocity, fpst

Rane Station ft deg fps fps Flood Ebb

CPH 1 4 -2 -0.03 0.06 0.02 -0.09
CPH 1 23 -1 -0.08 0.02 -0.05 -0.10
CPH 1 42 6 0.19 -0.02 0.17 0.21

YSC 1 4 3 -0.34 0.33 -0.00 -0.68
YSC 1 24 2 0.08 0.17 0.26 -0.09
YSC 1 45 7 0.50 0.29 0.80 0.20

CB-I 5 4 1 0.17 0.08 0.26 0.08
CB-I 5 22 1 0.46 0.19 0.65 0.26
CB-I 5 35 -4 0.20 0.20 0.40 0.00

YSC 4 4 -0 -0.32 0.18 -0.14 -0.51
YSC 4 22 -4 -0.05 0.06 0.00 -0.11
YSC 4 40 2 -0.15 -0.08 -0.24 -0.07

OD 1 4 0 -0.04 0.10 0.06 -0.15
OD 1 42 0 -0.27 -0.08 -0.36 -0.19
OD 1 81 1 0.14 -0.12 0.02 0.26

OD 2 4 -3 -0.15 0.06 -0.09 -0.21
OD 2 31 -2 -0.23 -0.08 -0.32 -0.15
OD 2 58 4 -0.26 -0.02 -0.28 -0.23

OD 3 4 -2 0.22 -0.13 0.08 0.36
OD 3 20 1 0.36 0.14 0.50 0.21
OD 3 37 -1 0.10 -0.00 0.10 0.11

RSC 2 4 9 -0.09 0.13 0.03 -0.22
RSC 2 24 9 -0.26 -0.03 -0.30 -0.23
RSC 2 44 -2 -0.26 0.06 -0.20 -0.32

OD 4 4 6 0.28 -0.02 0.26 0.30
OD 4 42 -5 0.22 0.04 0.27 0.17
OD 4 80 -15 -0.03 -0.03 -0.07 0.00

CC 2 4 7 -0.18 -0.08 -0.26 -0.09
CC 2 22 -1 -0.11 0.18 0.06 -0.30
CC 2 41 9 -0.23 -0.09 -0.33 -0.13

BC 2 4 -9 -0.22 0.00 -0.22 -0.22
BC 2 23 (-1) -0.01 0.01 0.00 -0.03
BC 2 42 (-3q) 0.02 -0.02 -0.00 0.05

BC 4 4 -25 -0.06 0.08 0.01 -0.15
BC 4 21 -40 -0.00 0.03 0.02 -0.03
BC 4 37 11 0.09 -0.17 -0.08 0.26

FM 1 4 (3) -0.07 0.01 -0.06 -0.08
FM 1 22 (-1) -0.04 0.04 -0.00 -0.09
FM 1 40 (10) 0.02 0.00 0.02 0.01

All differences are expressed as plan value minus base value.
- Base test depth; see Table 2 for plan test depth.
t Maximum velocities determined from cosine curve fit of the data rather than

the observed maximum values.
() Questionable value due to low currents.
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Table 10

Plan Minus Base Velocity Characteristics Differences*

During Neap Tide, 30,000-cfs Inflow Test

Maximum
Depth -* Phase Amplitude Offset Velocity, fpst

Range Stat.n ft deg fps fps Flood Ebb

CPH 1 4 -18 -0.44 0.38 -0.05 -0.82
CPH 1 23 -8 -0.09 0.14 0.05 -0.23
CPH 1 42 8 -0.06 0.02 -0.04 -0.08

YSC 1 4 5 -0.21 0.41 0.20 -0.62
YSC 1 24 6 0.03 0.05 0.08 -0.02
YSC 1 45 9 0.15 0.32 0.48 -0.17

CB-l 5 4 -2 -0.23 0.20 -0.03 -0.44
CB-1 5 22 -1 -0.23 0.01 -0.21 -0.24
CB-1 5 35 -4 -0.36 0.14 -0.21 -0.51

YSC 4 4 3 -0.02 0.18 0.16 -0.21
YSC 4 22 -10 -0.05 0.13 0.08 -0.18
YSC 4 40 9 0.08 0.04 0.13 0.03

OD 1 4 -6 0.11 0.22 0.33 -0.10
OD 1 42 -0 0.13 -0.01 0.12 0.15
OD 1 81 -3 -0.24 0.22 -0.02 -0.47

OD 2 4 1 0.16 0.04 0.21 0.11
OD 2 31 -5 0.11 0.00 0.12 0.11
OD 2 58 0 0.00 0.03 0.03 -0.03

OD 3 4 -5 0.16 0.19 0.36 -0.02
OD 3 20 -6 -0.02 0.01 -0.00 -0.03
OD 3 37 -8 -0.09 -0.00 -0.10 -0.09

RSC 2 4 -5 -0.28 0.04 -0.24 -0.32
RSC 2 24 -1 -0.22 -0.20 -0.42 -0.02
RSC 2 44 26 -0.12 -0.05 -0.17 -0.07

OD 4 4 -1 -0.13 -0.13 -0.27 0.00
OD 4 42 -12 -0.06 0.02 -0.04 -0.08
OD 4 80 (-9) -0.19 0.04 -0.14 -0.24

CC 2 4 3 -0.06 0.01 -0.05 -0.07
CC 2 22 -3 -0.14 -0.18 -0.32 0.04
CC 2 41 15 0.07 -0.03 0.03 0.10

BC 2 4 -0 0.08 0.07 0.16 0.01
BC 2 23 (-17) 0.01 0.00 0.01 0.01
BC 2 42 (9) -0.02 -0.00 -0.02 -0.01

BC 4 4 15 0.07 -0.03 0.03 0.11
BC 4 21 (-3) -0.13 -0.01 -0.15 -0.11
BC 4 37 (-3) -0.10 -0.01 -0.11 -0.08

FM 1 4 (-4) 0.00 -0.02 -0.01 0.03
FM 1 22 (26) -0.00 0.03 0.02 -0.03
FM 1 40 (-0) -0.09 -0.05 -0.14 -0.03

* All differences are expressed as plan value minus base value.

k* Base test depth; see Table 2 for plan test depth.
Maximum velocities determined from cosine curve fit of the data rather than
the observed maximum values.

() Questionable value due to low currents.
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